
 Extended XMODEM
and

Extended XMODEM/FI

Version 1.21

The Extended XMODEM specification

Release dates: 2002, 2004, 2008, 2009

Design and Implementation In-House
ADONTEC®

www.adontec.com

http://www.adontec.com/


ADONTEC Extended XMODEM

This document describes the Extended XMODEM extensions added to the standard XMODEM, 
XMODEM/CRC protocol by ADONTEC.

This document may be redistributed without restriction provided the text is not altered.

Please distribute as widely as possible.

Technical Support

Only with consulting and support contract. Please use the contact form at http://adontec.com 
to receive further informations.

ADONTEC Computer Systems GmbH
HOELDERLINSTR. 32
MAULBRONN 75433
GERMANY

2-19

http://adontec.com/


ADONTEC Extended XMODEM

Foreword
Computerized data communications has already a long history and many protocols invented to 
secure and speed data and file transfers.

A fascinating world of bits traveling with speed of light through wire, satelites or wireless created 
in order to connect people and machines through distance. Very known protocols like XMODEM, 
YMODEM, KERMIT, ZMODEM, TCP/IP and many other invented to fill the gap and move data 
communication technology forward.

We proudly present to you the Extended XMODEM protocol  in hope that it will serve the 
community and ease file transfers a bit further.

We are very eager to receive your constructive feedback.

Sincerely

Kiriakos Georgiadis

Chief Software Architect 

3-19



ADONTEC Extended XMODEM

Why invented?
XMODEM, even it is widely supported, it's rarely used, since it lacks of speed and other file 
transmission features that are standard today where ZMODEM rules. 

ZMODEM is fine but rather hard to implement. XMODEM on the other side is easy to implement 
and would perform as well as ZMODEM if it would include similar and well defined features.

As computer power and communication speed was growing the throughput could get even better 
if the data blocks were bigger. The XMODEM-1k extension, defined in the YMODEM specification, 
increased the block length of XMODEM/CRC to 1024 bytes. The XMODEM-1k is driven by the 
sender, a fact that is not-normal to XMODEM and if the receiver does not know about it, the 
communication will fail.

So the requirement was to define backwards compatible extensions to an already known protocol. 
The  Extended XMODEM protocol was born.

The Standard XMODEM Protocol
The standard XMODEM starts each packet with the control character SOH followed by the packet 
number and the inverted packet number. 128 bytes of data follow and the packet ends with the 8-
bit block-check. 

SOH Block# ~Block# DATA 0 ... DATA n Check

The 8-bit block-check is calculated on the DATA part.

The protocol is driven by the receiver. The sender must wait until the receiver transmit a NAK 
character. The sender then starts sending packets starting with block number 1, 2, … 255, 0, 1, 2....

The last packet may include less data bytes than 128 and is therefore filled with EOF bytes (ASCII 
26). Thus a file once transmitted with XMODEM „grows“ to the next multiple of 128.

XMODEM/CRC
XMODEM/CRC just replaces the NAK with the letter 'C' and the 8-bit block-check with a 16-bit 
CRC (Cyclic Redundancy Check).

4-19



ADONTEC Extended XMODEM

The Extended XMODEM protocol 
The Extended XMODEM protocol specification defines various buffer sizes in order to optimize the 
data throughput on what the data link has to offer. It uses 16 bit CRC in order to maximize 
detection of changes in the transmitted data. The features of this protocol can be summarized as 
follows:

• The protocol is based on XMODEM/CRC.

• It appends a 16-bit CRC.

• It supports packets of 128, 512, 1K, 2K, 8K, 32K or 64K bytes in length (K=1024).

• It can be easily extended to other packet length.

• It expects an 8-Bit transfer medium.

• It is backwards compatible to the standard XMODEM and XMODEM/CRC.

• It supports transmitting file information (optional feature - file info).

• Receiver informs the sender about the file name to transmit (optional feature - file request).

• Receiver can 'wake up' sender and request a specific file (optional feature - file request).

• And   the XMODEM feature that many expected: It transmits the exact file size without 
padding the file with a number of ASCII 26 bytes!

• Using the Extended XMODEM protocol, the file does not „grow“ since the last short packet 
is recognized. 

5-19



ADONTEC Extended XMODEM

Synchronization
The protocol is driven by the receiver as it is in standard XMODEM. The receiver is requesting the 
configuration to be used during the file transfer and is keeping track of the received packets. 

The following table is showing some synchronization sequences for some variations of this 
protocol:

Tx Rx

1

2

3

4

'C'
<---------------

SOH
---------------->

DLE '0' 'C'
<---------------

DLE SOH
---------------->

DLE '1' 'C'
<---------------

DLE SOH
---------------->

DLE '2' 'C'
<---------------

DLE SOH
---------------->

1. Standard XMODEM with 128 byte per block and 16-Bit CRC.
2. Extended XMODEM with receiver requesting 32K byte per block.
3. Extended XMODEM with receiver requesting 64K byte per block.
4. Extended XMODEM with receiver requesting 8K byte per block.

Control chars
DLE = one byte ASCII 16 
SOH = one byte ASCII 1
EOT = one byte ASCII 4
ACK = one byte ASCII 6
NAK = one byte ASCII 21
CAN = one byte ASCII 24
'C' = the character C, ASCII 67
'1' = the character 1, ASCII 49
'2' = the character 2, ASCII 50

6-19



ADONTEC Extended XMODEM

Requesting Extended XMODEM Options
The receiver selects the required Extended XMODEM option by transmitting three characters: DLE 
option 'C' e.g. DLE '0' 'C'in order to request block size of 32K.

If the transmitter is not aware of the extensions, it will ignore all characters up to the 'C' and start 
with XMODEM/CRC.

If the receiver would be sending a NAK instead, the transmitter had to do XMODEM with 8-bit 
checksum. So the synchronization process is rather simple and remains backwards compatible.

Block Size Options

One major enhancement in this protocol is the variable packet length (block size, buffer etc.). The 
following block size options are currently defined:
XM_32K_CHAR   '0'    32768 bytes per block
Defines a block size of 32K. Calculating the CRC is the same as in XMODEM/CRC with minor 
differences (see details in CRC Calculation).
XM_64K_CHAR   '1'    65536 bytes per block
Defines a block size of 64K. Calculating the CRC is the same as in XMODEM/CRC with minor 
differences (see details in CRC Calculation).
XM_8K_CHAR    '2'     8192 bytes per block
Defines a block size of 8K. Calculating the CRC is the same as in XMODEM/CRC with minor 
differences (see details in CRC Calculation).
XM_2K_CHAR    '3'     2048 bytes per block
Defines a block size of 2K. Calculating the CRC is the same as in XMODEM/CRC with minor 
differences (see details in CRC Calculation).
XM_1K_CHAR    '4'     1024 bytes per block
Defines a block size of 1K. Calculating the CRC is the same as in XMODEM/CRC with minor 
differences (see details in CRC Calculation).
XM_05K_CHAR   '5'      512 bytes per block
Defines a block size of 512 bytes. Calculating the CRC is the same as in XMODEM/CRC with minor 
differences (see details in CRC Calculation).
XM_01K_CHAR   '6'      128 bytes per block
The last one can be used to imitate the standard XMODEM/CRC but avoid the „grow“ of the file 
on receiver side. Calculating and transmitting the CRC is the same as it's defined in standard 
XMODEM/CRC. Only the receiver will act differently on the last short packet to avoid the „grow“ 
of the file (see the definitions for the receiver in File Size and Last Packet and Synchronizing an 
unaware sender). If the sender used is not aware of Extended XMODEM the file size will „grow“. The 
minimum requirement to a custom sender is to transmit the last packet without adding EOF 
(ASCII 26) characters.

*1K=1024 bytes

7-19



ADONTEC Extended XMODEM

Buffer Allocation

A transmitter starts sending packets for the requested length and then adds the 16 bit CRC 
according to the one used in XMODEM/CRC. Once the receiver received a long packet, it knows 
that the transmitter enabled the requested feature but it will continue keeping track of the CRC in 
order to catch errors and catch last short packet.

The receiver allocates an internal buffer according to the requested option increased by the size of 
the CRC, which is 2 bytes for the used CRC-16-CCITT.

   Buffer = AllocMem(BufferSize + 2)

Calculating CRC and Last Packet

CRC calculation

The CRC calculation is the same as used in XMODEM-CRC (CRC-16-CCITT , polynomial 1021 
hex) with some minor  differences. 

– The CRC starting value is set to hex FFFF instead of 0.
– The 1st complement of the CRC is transmitted.

The receiver's CRC, after passing the received CRC bytes also into the CRC machine, completes at 
the magic value hex 1D0F and not 0 as it does with standard XMODEM/CRC. 

The CRC's 16 bits are transmitted as in standard XMODEM/CRC: bits 8 to 15 first (high byte) and 
bits 0 to 7 next (low byte).

SOH Block# ~Block# DATA 0 ... DATA n CRC_HI CRC_LO
The CRC is calculated on the DATA part.

Last Packet and File Size

With XMODEM, XMODEM-CRC and XMODEM-1K, it is possible for a file to "grow" up to the 
next multiple of 128 or 1024 bytes. With the Extended XMODEM the file does not „grow“ since the 
last short packet is recognized by the receiving algorithm used. 

The receiver usually receives each packet by expecting the maximum packet length plus the CRC 
(2 bytes). In case of the last short packet, the receiving function will just timeout returning less 
bytes. If the CRC calculated matches the one received, the receiver ignores the CRC bytes in the 
buffer and returns the rest.
    Count = RXPacket(Buffer, BufferSize + 2, SEC_1)
   GetCRC(Buffer, Count) 

ret = Count - 2    ignore the crc bytes

The RXPacket function is by default working with an inter-character timeout of 1000 ms. If no data 
received for this amount of time, it returns with the data received until then. If the CRC does 
match, then it is a complete packet, else it is a data error. 

Another way to catch the last short packet without waiting to timeout is to check the amount of 
bytes received and compare this value with the file size reported by the sender.

8-19



ADONTEC Extended XMODEM

The delay introduced by the one character timeout on the last short packet is rather meaningless. 
An inter-character delay of about 100 ms to 1000 ms should be sufficient for most data links. A very 
short value may false timeout.
       
 *ms = 1/1000 second, 1000 ms=1 second.

Synchronizing with an unaware sender
Q: How does the receiver synchronize with an unaware sender that is sending with 
XMODEM/CRC instead of e.g. XMODEM/32k ?

A: The receiver must pay extra attention to the first error-free packet it receives. If the first packet 
received is exactly 130 (128 + 2 crc bytes) it may be: 1) the one and last short packet of a small file 
transmitted with the new extensions or 2)  it may be the first packet of a file for which the sender 
does standard XMODEM/CRC and 128 byte packet size. The receiver now generates a CRC 
according to the standard XMODEM/CRC. If the resulting CRC is 0 we have case (2), standard 
XMODEM/CRC with 128 bytes packet size. If not, the receiver generates an Extended XMODEM 
CRC. If the CRC results to the magic number 1D0F we have case (1) else it's an error and it should 
transmit NAK to sender.  See the following pseudo code:
      Count = RXPacket(Buffer, BufferSize + 2, SEC_1)

      IF (Count = 130 AND FirstPaket=FALSE) Then // Standard XMODEM/CRC ?
          crc = GetCRC(Buffer, Count, 0)  // CRC init with 0 
          IF crc = 0 THEN OK = TRUE, Protocol = XMODEM_CRC, BufferSize = 128
      END IF

      IF NOT OK THEN   // check for new extension crc
          crc = GetCRC(Buffer, Count, FFFF)  // CRC init with 1 bits
          IF crc = 1D0F THEN OK = TRUE        
      END IF

      IF OK THEN 
          ret = Count – 2  // ignore the two crc bytes 
          FirstPaket = TRUE // remember we got it
      ELSE
          SendNAK
      END IF

Speed consideration
The Extended XMODEM specification offers different buffer options to match better to the used 
speed and optimize the data throughput.

The packet size should be selected according to the speed of the data link involved. A good 
approach is the „1 seconds data packet“. If the used data link is serial with 115200 bps the 
maximum data that can be transmitted are about 11k per second. So a buffer size of 8k is fine to go. 
A buffer size of 32k could be acceptable too. A very large buffer size would not fail, it would 
possibly increase speed a bit, but any statistical information displayed by the application may not 
be possible, while the packet is on its way and the application could look like frozing for a few 
seconds.

9-19



ADONTEC Extended XMODEM

Packet Acknowledgement Mechanism
As with the standard XMODEM, data integrity is assured by checking the block-check and 
transmitting ACK or NAK byte. 

Timeouts
Timers are used for the several protocol states as the synchronization loop at start, the inter-
character delay and the acknowledge timeout.

• WaitSYN   60s

• WaitACK   10s

• WaitOneChar   1s

The values listed here are the defaults and should be used if released to the public. Private and 
custom implementation may require or use other values.

Retries
Each packet transmitted may be resented, because of an error, up to 5 times. The receiver will 
perform various check on each packet received and NAK, if it locates any error. The retry counter 
used is set to 0 on each successful packet and increments by one on every retry (NAK). If the retry 
counter reaches the value of 6 it will initiate the abort sequence. 

Graceful Abort
Aborting the file transfer may be necessary because of errors or at user request.

A user request can be identified when checking a variable that can be set by the calling application. 
This check is specific to the custom protocol implementation (environment, language etc.) and not 
part of the protocol specification.

In order to abort the protocol has to transmit the abort sequence. The abort sequence in XMODEM 
used to be a sequence of two CAN (ASCII 24) characters. ZMODEM used 8xCAN followed by 
8xBackspaces (ASCII 8). Many variations of the abort sequence can be found in third party 
imlementations. SuperCom uses 8xCAN followed by 10xBackspaces in most of the standard 
protocols (XYZMODEM, Kermit) it supports.

The abort sequence is transmitted by one side only. If it is the transmitter, it clears its output buffer 
first and then it transmits the abort sequence.  If it is the receiver, it transmits the abort sequence 
and keeps clearing its input buffer until no more data arrive. 

If a sender is receiving the abort sequence it clears the transmit buffer and ends the protocol 
function. This ensures that the remote will not get unexpected data.

If a receiver is receiving the abort sequence, it continuously clears the input buffer until no more 
data arrive – then it ends the protocol function. 

10-19



ADONTEC Extended XMODEM

The Extended XMODEM File Information
A file transfer as offered by XMODEM was fine then but rather poor for today. A way of 
transmitting file information using this protocol is presented in the following. 

The options described so far are mandatory and must be implemented by any software that claims 
to support Extended XMODEM.  The following features are optional, but as a whole. If one claims 
to support the extended XMODEM file information feature ( Extended XMODEM/FI ), it must 
support all options described in the next section. Anything less does simply not comply and such 
software cannot be named as such!

The File Information Packet enables the receiver to

– use the original file name as transmitted by the sender

– use such information as file size

– time stamp the same date&time information as the original file

– check file date and file size and skip transmission if not newer

– request a specific file from sender (feature unique to this protocol)

In order to transmit file information, the sender is using the first packet with packet number 0. The 
sender cannot send this information if not previous told so by the receiver. This kind of 
information is exchanged by transmitting request and reply information using strings consisting of 
name and value pairs. 

Syntax:  [name=[value];]

e.g. FILE=test.txt;    or   an empty value  FILE=;

The field names can be in any combination of uppercase or lowercase but uppercase should be 
preferred whenever possible in order to ease testing and debugging. Values must be presented as 
defined or expected by the receiver. No space (ASCII 32) allowed before and after the '='.

e.g. „FILE=test.txt;    is the preferred way
       „File=test.txt;“   is acceptable too
       „FILE = test.txt;“ WRONG

Senders File Information Packet

The senders File Information packet may include various fields as FILE, LEN, DATE, POS and also 
custom fields. It's up to the receiver to use or ignore any.

The „informational“ packet is transmitted by the sender with packet number 0 and may contain a 
string with various fields (name + value pairs) as data. 

e.g.   "2034;LEN=2034;FILE=test.txt;DATE=2009-10-24T20:33:45.339;",0,0
     (the characters ',' and '"' are not transmitted!)

As it is obvious from the sample, the length information is placed twice. For lazy programmers 
waiting only for the length information, it's placed at the beginning of this packet without the 
name string. This file size specifier always exists even if - for any reason - set to „0;“ (never expect 

11-19



ADONTEC Extended XMODEM

this to be the case). This information also enables the receiver to check alternatively for the last 
short packet and also show statistics.

A sample of a lazy file information string having file size only:    "2034;",0,0 
The „informational“ packet ends when the two zero bytes are received. The CRC will be received 
next. 

The length of this packet is limited only by the selected buffer size.

Each field starts with the name, followed by the value and ends with a ';'. All data presented in this 
part should be printable data (ASCII 32 to 126) e.g.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ\^_`
abcdefghijklmnopqrstuvwxyz{|}~

The fields currently supported are presented later in this section. Custom fields may added as 
required. 

The LEN field

The len field is prefaced with „LEN=“ and defines the size of the file in bytes. Only decimal 
numbers allowed. If file size information is included, it enables the receiver to check alternatively 
for the last short packet and also show statistics.

The FILE field

The file name is prefaced with „FILE=“ and can contain a path or not. The receiver can ignore the 
path or use it. Valid path separators are '\' and '/', but only one can be used at a time.

Example sender with file packet:

"2034;FILE=orders.txt;",0,0

The file name may be lowercase, uppercase or mixed. It does not matter to the protocol, but may 
be restricted by the used operating system.

The DATE field

The DATE field is prefaced with „DATE=“ and may include a complete date and time or parts of it.

The Date information field, is presented in the international ISO 8601 format as YYYY-MM-DD 
HH:MM:SS.MS. It's valid to appear partially e.g. „Date=YYYY-MM-DD;“  or „Date=YYYY-MM-DD 
hh:mm;“ . The time representation is using the 24-hour timekeeping system and it may even 
include milliseconds.

ISO 8601 supported format

YYYY-MM-DDThh:mm:ss 

• YYYY defines the year [all the digits, i.e. 2012] 
• MM defines the month [01 (January) to 12 (December)] 
• DD defines the day [01 to 31] 

The time and date can be separated with the letter 'T' or a space ' '*.

12-19



ADONTEC Extended XMODEM

e.g. 2003-04-01T13:01:02

ISO 8601 does not include milliseconds* in the time field so if added it should follow the seconds 
starting with the period '.'. 

e.g. 2003-04-01T13:01:02.355
             
* The following deviations from ISO 8601 introduced:

– The time and date can be separated with the letter 'T' or with a space ' '.
– Milliseconds   can be added after the seconds starting the field with a period '.'.

The following example shows this more clearly
    DATE=2003-04-01 13:01:02.355;
Date and time separated with a space and it includes milliseconds.

The POS field

The POS field can be used by the receiver to inform an aware sender that the file transfer is to 
begin from a specific position in file. If this is possible the sender should include a „POS“ field in 
the file information packet it will transmit or else the receiver will ignore the resume request and will 
start writting from possition 0 into the file (same as „POS=0;“).

If the requested offset exists the sender should reply with the same „POS“ information. If the file is 
smaller than the requested offset the sender should omit or reply with „POS=0;“.

The FILESLEFT field

If more than one file is to be transmitted the sender may include additional information about the 
number of files and the overall file size (see FILESSIZE).

The FILESLEFT field shows the number of files remaining to transmit including the actual one. Its 
value starts with the total number of files and decreases by one on each following thus the last file 
shows „FILESLEFT=1;“.

It's expected to be included in each file of a batch, if used in the first one. If the transfer includes 
only one file it can be transmitted as „FILESLEFT=1;“ or omitted. If included, it enables the receiver 
to show statistics like: 1 of 3, 2 of 3, 3 of 3.

The FILESSIZE field

If more than one file is to be transmitted, the sender may include additional information about the 
overall file size and total number of files  (see FILESLEFT).

The FILESSIZE field shows the total size in bytes of the remaining files included in this batch 
including the actual one. Its value starts with the total size of bytes and decreases by the size of the 
file already transmitted thus the last file shows a total file size equal to the actual file's size (=LEN).

It's expected to be included in each file of a batch, if used in the first one.

If the transfer includes only one file, it can be set to the same value as for LEN or omitted. 

If this information is included, it enables the receiver to show statistics like: 1024 of 23450, 2048 of 
23450, …,  23450 of 23450.

13-19



ADONTEC Extended XMODEM

The VER field

This field informs the remote about the protocol version implemented. If used it must be „VER=1;“ 
for this release of the protocol.

The MFR field

This field informs the remote about who is the manufacturer of the used software or protocol.

e.g. „MFR=ADONTEC;“

The SN field

This field provides the receiver with the serial number. Must be provided if it is expected by the 
remote. 

The USER field

This field provides login information, if required by the remote (Username).

The PASS field

This field provides login information, if required by the remote (Password).

Receiver Request Options

The receiver is requesting file information by transmitting the following data:
DLE buffer_option [optional options] 'C'

The sender triggers on DLE and filters up to the closing ']'. The rest is the standard trigger for 
buffer options and CRC.

So the optional options are set between the '[' and ']'. Care must be taken not to false trigger an 
unaware sender by leaving a 'C' character in this area. If the 'C' appears within this area, it should 
be escaped with '#' and transmitted in lowercase e.g. '#c'. If the '#' appears too it must be doubled 
e.g. '##'. More than one option is separated by ';'.

In this release, the fields FILE and POS are defined to be used within a receivers request and must 
be supported by the sender. Other fields described in the senders Senders File Information Packet, 
can also be used if expected by a custom implementation e.g. USER, PASS fields. Unaware sender 
will just ignore.

The FILE request field

A receiver aware of file names may request the file information by enclosing the short form of this 
option 'F' e.g.

DLE4[F]C   (no spaces between the characters !)

An alternate format is using the complete name of the field.

DLE4[FILE=;]C     Valid but meaningless use [F] instead! 

14-19



ADONTEC Extended XMODEM

or

DLE4[FILE=data1.txt;POS=12345;]C      OK

The short form of this option ('F') can only be used alone. See below:

DLE4[F]C              OK
DLE4[F;POS=12345;]C    WRONG!
DLE4[FPOS=12345;]C     WRONG!
DLE4[Ftest.txt;]C   WRONG! 

The POS request field

See the description of the POS field used in the Senders File Information Packet. 

Requesting a specific file
The receiver may even request the sender to transmit a specific file. This is possible by adding the 
filename to the 'FILE' option. 

Example of receiver requesting the file at C:\WORKPLACE\ORDERS.TXT
DLE 4 [FILE=#c:\WORKPLA#cE\ORDERS.TXT;] C
(where DLE = one byte ASCII 16 transmitted)

If the sender does not implement this feature, it will start with packet number 1 as in standard 
XMODEM. The receiver observes the starting packet number in order to handle the file 
information block or not. 

Automated Start Of Sender
An application intending to start the sender automatically, when a receiver requests a file, has to 
observe the receiving buffer for the following byte sequence:

 tfex + BS + BS + BS + BS where BS =  one byte ASCII 8 (backspace)

The request is expected to start with „tfex“ and must be followed by four BS ('+' character is not 
really received). The four BS characters are used to clear the terminal window, if any used.

Once the senders protocol function executes, it has to wait for the receivers  DLE ? C sequence.

A complete 'wake up' request from the receiver can look like the following one:
  tfex BS BS BS BS DLE4[FILE=#c:\WORKPLA#cE\ORDERS.TXT;]C
Since only the part up to the DLE is constant, the senders application can trigger up to that point. 
Since most protocol implementations will have the senders protocol function to expect the DLE 
sequence once started, this may be the preferred way to trigger.

Skip file if up-to-date 
The receiver requests the file information from sender and compares the received „LEN“ and 
„DATE“ values with the file already on disk. If the file is up-to-date, the receiver will request the 
sender to skip this file by transmitting a CAN instead of an ACK, as reply on the senders first 

15-19



ADONTEC Extended XMODEM

packet (packet number is 0). A sender receiving CAN on its File Information packet (first packet 
with packet numer 0) will just end the file transmission.

Tx Rx

DLE 4 [F] C
<---------------

SOH|00|FF| 2034; LEN=2034; 
FILE=test.txt; DATE=2009-10-
24T20:33:45.339; | 0 | 0 |

CRC_HI | CRC_LO
---------------->

CAN
<---------------

Requesting a new version of an existing file 
The receiver requests the new version of a file from the sender by including the „DATE“ field and 
optionally the „LEN“ field with values from the file already on disk. 
tfexBSBSBSBSDLE4[FILE=#c:\WORK\ORDERS.TXT;LEN=2536;DATE=2007-08-01T16:33:12;]C
If the file is up-to-date or non existent, the sender will skip this file by transmitting the EOT (ASCII 
4) instead of its File Information packet and will wait for the ACK and then end the file transmission.

The receiver usually closes a file when EOT received and replies ACK. If the file is up-to-date, it 
should not be altered nor deleted by accident. Therefore, the receiver opens/creates the file only 
after it has received the first data packet (packet number=1). The result will be the untouched file 
in case it's up-to-date or no file at all, if the requested file does not exist on senders side.

If the „DATE“ field is provided the two dates will be checked and if the remote file is newer, the 
„LEN“ field will be ignored (if no other reason applies to check) and the file will be transmitted.

If the „DATE“ field is not included but „LEN“ is included, the file will be transmitted if file sizes 
differ. 

If „DATE“ and „LEN“ fields are omitted, the file will be always transmitted if it exists.

Resume a specific file
If the receiver is aware of a broken file transfer, it may request the sender to resume from the last 
good position. For this, it starts the file transfer by including the „FILE“ and „POS“ fields.
DLE 4 [FILE=#c:\WORKPLA#cE\ORDERS.TXT;POS=2048;] C

16-19



ADONTEC Extended XMODEM

Samples from the real world
1) A receiver indicating it can handle 32k blocks

DLE0C
and the sender replies with 32k data in each packet and since it should not offer file information it 
starts with packet number 11.

| SOH | 01 | FE | 20 | 56 | 40   | 03 | 28 | ....   | CRC_HI | CRC_LO

2) A receiver indicating it can handle file information
DLE4[F]C

and the sender replies with packet number 0 including file information
| SOH | 00 | FF | 2034;FILE=sales.mdb;   | 00 | 00   | CRC_HI | CRC_LO

3) The receiver is requesting a specific file:
DLE4[FILE=#c:\WORKPLA#cE\ORDERS.TXT;]C

and the sender replies with
| SOH | 00 | FF | 2034;FILE=orders.txt;   | 00 | 00   | CRC_HI | CRC_LO

or including DATE information
| SOH | 00 | FF | 2034;FILE=orders.txt;DATE=2004-08-20T20:45:33;   | 00 | 00   

| CRC_HI | CRC_LO

4) The receiver does a 'wake up' call on the sender's application and is requesting a specific file as 
next:

tfex BS BS BS BS DLE4[FILE=#c:\WORKPLA#cE\ORDERS.TXT;]C

NOTE
DLE = one byte ASCII 16
BS  = one byte ASCII 8

The sender's reply may also include POS, VER, DATE, FILESLEFT, FILESZISE etc.

1 Standard XMODEM does not support file information and always starts with packet number 1.

17-19



ADONTEC Extended XMODEM

SuperCom specifics
SuperCom was the first library used to develop this protocol. 

The protocol is receiver driven and the SuperCom implementation offers the following constants to 
select the protocol option for the receiver:

PROTOCOL_EXMODEM_01K
PROTOCOL_EXMODEM_05K 
PROTOCOL_EXMODEM_1K
PROTOCOL_EXMODEM_2K
PROTOCOL_EXMODEM_8K
PROTOCOL_EXMODEM_32K
PROTOCOL_EXMODEM_64K 

The above constants can be used with the receiving function e.g. RS_RXFileEx  or, in case of the 
ActiveX API, the  property Protocol in order to select the preferred option.

The SuperCom transmitter can be called with any of the available protocol options (e.g. XMODEM, 
XMODEM/CRC, XMODEM/8K to XMODEM/64K). It will consider the request received from the 
receiver.

An unaware third party transmitter will probably start with XMODEM or XMODEM/CRC, 
options that are well supported by the Extended XMODEM receiver.

The SuperCom transmitter is started with RS_TXFileEx  or, in case of the ActiveX API, the property 
FileTransmit.

The SuperCom receiver is started with RS_RXFileEx  or, in case of the ActiveX API, the property 
FileReceive.

More details about using this protocol with SuperCom can be found in the product documentation.

18-19



ADONTEC Extended XMODEM

New Features and Extensions
Any comments are welcomed. If you have any interesting features in mind, please, feel free to 
share it with us and others. From time to time we will evaluate and add new features in it. If one of 
the new features came from you, your name can appear next to it.

Consulting and development support
We gladly assist developers to incorporate this protocol into applications. Consulting and 
development services are available. You can submit your requirements through 
http://www.adontec.com.

19-19

http://www.adontec.com/

	Foreword
	Why invented?
	The Standard XMODEM Protocol
	XMODEM/CRC

	The Extended XMODEM protocol 
	Synchronization
	Requesting Extended XMODEM Options
	Block Size Options
	Buffer Allocation

	Calculating CRC and Last Packet
	CRC calculation
	Last Packet and File Size

	Synchronizing with an unaware sender
	Speed consideration
	Packet Acknowledgement Mechanism
	Timeouts
	Retries
	Graceful Abort
	The Extended XMODEM File Information
	Senders File Information Packet
	The LEN field
	The FILE field
	The DATE field
	The POS field
	The FILESLEFT field
	The FILESSIZE field
	The VER field
	The MFR field
	The SN field
	The USER field
	The PASS field

	Receiver Request Options
	The FILE request field
	The POS request field
	Requesting a specific file
	Automated Start Of Sender
	Skip file if up-to-date 
	Requesting a new version of an existing file 
	Resume a specific file



	Samples from the real world
	SuperCom specifics
	New Features and Extensions
	Consulting and development support


